A

/

e

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

a
\

a ¥

/,

[\

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Evaluation of Integrals Occurring in the Theory of Molecular
Structure. Parts | & |l

M. P. Barnett and C. A. Coulson

Phil. Trans. R. Soc. Lond. A 1951 243, 221-249
doi: 10.1098/rsta.1951.0003

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1951 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;243/864/221&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/243/864/221.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
)\
ZASENO N S}

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

7~
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 221 ]

THE EVALUATION OF INTEGRALS OCCURRING IN THE THEORY
OF MOLECULAR STRUCTURE. PARTSI & II

By M. P. BARNETT anp C. A. COULSON, F.R.S.
Wheatstone Physics Laboratory, King’s College, London

(Received 18 May 1950—Revised 14 August 1950)

CONTENTS
PAGE PAGE
Part I. Basic Funcrions 221 ParT II. OveErLap, REsoNaNCE, COULOMB,
1. Introduction 291 HyYBRID AND OTHER TWO-CENTRE INTEGRALS 234
2. Simplification of J integrals 222 10. Introduction 234
3. Basis of the new method 224 11. Wave functions 236
4. Numerical integration of the Z functions 225 12. Reduction of one-electron integrals 237
5. Analytical reduction of the Z functions 227 13. Tv.vo-electron Coulomb and hybrid 0
6. Numerical example 231 1n}:egrals . d Coulomb 0
7. Differentiation of the Z functions 232 14. Exc angc-}.)em?tratlon and Loutomb-
penetration integrals 248
8. Tabulation of necessary quantities 232
.. ACKNOWLEDGEMENTS 248
9. Comments on the derivation of the
formulae 232 REFERENCES 249

Part I A new technique is developed for evaluating the integrals which occur in molecular theory.
The method is based on the expansion of exponentials in terms of the so-called { functions. These
involve modified Bessel functions. In this part we list the properties of these { functions needed for
the two-centre integrals. A table is provided of the I’s and K’s used in their tabulation. An account
is given of the properties of certain integrals of the ¢ functions and some numerical examples are
provided.

Part II: Methods are described for the evaluation of the two-centre, one-electron Coulomb,
overlap and resonance integrals, for the two-electron Coulomb and hybrid (Coulomb-exchange)
integrals, and for the penetration integrals. Formulae are listed for more than 180 distinct
integrals.

PART I. BASIC FUNCTIONS

1. INTRODUCTION

The most serious technical difficulty in many calculations of molecular theory lies in the
analytical complexity of the integrals which arise as soon as two or more centres of force
become involved. Expressions for quantities as diverse as transition probabilities and dipole
moments, energy levels and scattering coefficients can all be formulated, by use of wave
mechanics, in terms of integrals of a few standard types. In many other branches of theoretical
physics, there arise integrals which are formally identical with those of wave mechanics;
thus examples are to be found both in nuclear theory and in astrophysics.

The calculations are sometimes extremely difficult when only two centres of force are
involved, and the integration is to be carried out over the space of a single particle. An even
worse situation arises when double space integration is necessary. For example, if the
integration is over thespace of two interacting electrons, we have the r,,-integrals mentioned
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222 M. P. BARNETT AND C. A. COULSON ON THE

below. Multi-centre integrals, involving three or four centres of force, have hitherto been
considered to be intractable except in a few isolated instances. New ways of calculating
those molecular integrals which have previously been regarded as inaccessible, and better
ways of calculating the others, are much needed. We are attempting to meet these needs,
using a technique which involves certain { and Z functions introduced below.

The integrals with which we shall be concerned may be divided into two groups, according
to whether they can be broken down to integrals of the form (1), which for convenience we

shall call J integrals.
J = [er ity Y, (00 ) Y, (03, 4) dV. )

In (1) (r,, 0, ¢) and (r,,0,,$) are the polar co-ordinates of a point, referred to two nuclei,
A and B, as origins, and the lines AB and B4 respectively as polar axes (figure 1). The ¥’s
are surface spherical harmonics, and «, v, p, ¢ are integers. The integration is over all space.

p

In the applications to molecular theory in its present state, the integrals which can be
reduced to such J’s include the one-electron overlap and resonance integrals, the two-
electron Coulomb and hybrid (Coulomb-exchange) integrals, and also the ‘penetration’
integrals. These are all dealt with in part II. They comprise, in fact, all but one of the types
of molecular integral which appear in systems involving only two nuclei. The one exception,
the exchange integral, will be considered in a later part, together with the three- and four-
centre integrals.

The immediate object of this first part is the description of the new method for evaluating
the J’s. Because the relevant properties of the {’s and Z’s suffice also for the evaluation of the
multi-centre integrals, this part can be regarded as providing the mathematical basis for
a systematic approach to the problem of evaluating all the conventional integrals of molecular
theory.

2. SIMPLIFICATION OF J INTEGRALS

Integrals such as (1) can always be simplified. For the integration over the co-ordinate
¢ is immediate, and by use of the relations (see figure 1)

7,8inf, = r,sinb, (2a)

r,COS f,= p—r,cos 0, (2b)
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EVALUATION OF INTEGRALS IN MOLECULAR STRUCTURE 223

we can subsequently remove 0, from the integrand (p is the internuclear distance). This
enables us to confine our attention when listing formulae, solely to the ‘standard’ J functions,
defined in terms of three indices £, /, m by

J(k, I,m) = f e~ra=Frocosk § 1l 14V. (3)

When making this reduction we have to decide which nucleus shall be called 4, and which
B. For this purpose we need to consider the two differencesu—p and v—g¢in (1). If both these
differences are greater than or equal to —1, then the choice of 4 is irrelevant, and two
distinct evaluations of the integrals are possible, thus providing a convenient check on our
work. If u—p< —1,and v—¢=> —1, then 6, should be eliminated, as in (3), and vice versa
ifu—p>—1,andv—g< —1. In these cases only one evaluation is possible. It transpires that
the remaining possibility, in which both #—p and v—gq are less than — 1, seldom arises. In
making the reduction to (3), we have eliminated sin ¢, in favour of cos ¢,. No great difficulty
arises in this latter step since one result of the ¢ integration, followed by application of (2a),
is that only even powers of sin #, appear in the integrand.

The quantities which must first be constructed when using our method are certain
Z functions to which reference has already been made. Any J integral of the form (1) can be
expressed as a linear combination of a few such Z’s. To do this, the integral is first expressed
as a sum of the ‘standard’ J’s defined in (3). Expressions for these in terms of Z’s can then
be obtained from equations (9), (11), (17) below, and combined algebraically. It may be
pointed out that the standard J’s are of use only for the purpose of listing formulae. For the
purpose of systematic numerical tabulation, the most suitable quantities are the Z functions
themselves.

It is important, at this point, to note that many simple cases of the original integral (1)
can be readily evaluated by expressing the integrand in terms of confocal elliptic co-ordinates
with foci at 4 and B. One of us (Coulson 1942) has already listed explicit expressions for
about 50 of these integrals; this list is still the best source for such integrals as it contains. But
when a J integral is not included in the list, or cannot immediately be obtained from one
which is, some other procedure is necessary. Any extension of the list requires a very con-
siderable amount of work, both algebraic and numerical; the later members of the list itself
bear evidence of this growing complication. And we have found that for the purposes of
part II, over 50 additional J’s would be required. Expressions for these could be obtained
by the same methods as were used previously, but, particularly when u—p or v — ¢ is less than
—1, they are too unwieldy for general use. This is still true even though we have shown, in
some unpublished work, that such J’s may be reduced in a systematic manner. We cannot,
therefore, recommend this approach. Nor can we recommend a further alternative method,
which we have studied carefully, in which the co-ordinates used are 7,, 7, and ¢. Particularly
when dealing with the two-electron integrals of II, this also is excessively laborious and
unwieldy.

The technique that we have found most convenient consists of an expansion of 721 e~#r in
(3) in terms of 7, and 0,,. The integration with respect to 6, presents no great difficulty, but the
final integration with respect to 7, is more troublesome. We shall return to this matter later.

30-2
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224 M. P. BARNETT AND C. A. COULSON ON THE

3. BASIS OF THE NEW METHOD

The basis of our new method lies in the expansion of 71 e~#7 in terms of r, and §,. Such
expressions, which have already proved useful in certain three-centre integrals studied by
one of us (Coulson 1937), take the form of infinite series. In general, let us write

ym-1e=hr — :03’(2+I) n(€0s0,) & n(Bs7as )f:/?"”‘“n 02\7(1")11’(00560) Con(LtsT),  (4)

where ¢ and 7 are the dimensionless variables

t=pr, (50)
r=pp (5)

and P, is the Legendre polynomial of order n. Each {,, ,(§,7,; p) is a function of the variables
fs 7, p. Its form is defined by the two parameters m and n. Whenm = 0,1, 2 the {,, ’s are the
functions used previously (Coulson 1937), and denoted by y,,(£, 7,; p), £.(F> 723 p) and g, (6, 7,5 p)
respectively. Of these the simplest is y,(f, 7,; p) which may be expressed as:

yn(ﬂﬂra; )— nh‘(ﬁr) n+%(/gp) Taglo' (6)

When 7,> p, the positions of 7, and p on the right-hand side of (6) are interchanged. The
Iand K are standard Bessel functions of purely imaginary argument. It is obvious from the
definition (4) that the {, ,(f,7,; p) functions of higher index m may be obtained from the
y,.'s by partial differentiation with respect to f. They may all be expressed as linear com-
binations of y functions. The expression for the p, function is simply

£l 85 7) = (g ) a5 1) =155 7)) (1)

The ¢, , functions of higher index m can be reduced by repeated use of (8) to y, or p, functions,
depending on whether m is even or odd.

2¢r

§m+2 n (t +72) é’m n

(2n+1)

In equation (8), and elsewhere in this paper, when the symbols {,, ,, ¥, £, OF ¢, are used
without explicit reference to their arguments, these may be supposed to be (1,%; 7).

When the expansion (4) is substituted in the standard integral (3), the integration with
respect to 0, and ¢ is straightforward, and there remains a single integration, which can be
written in the form

) { ém n— l+ (n+1) Cm,n+1}' (8)

pm e Tl ym) = 5 [ et fm, s 1) d (9)
0
where Kk = ajp. (10)
The f functions are linear combinations of the {,, ,’s. In particular, we have
Slm; 058) = G (11a)
Slm, 15 8) = &, (118)
f(m92; t) :‘:m,o—%(é/m,o__ m,2) (116‘)
J(m, 35 8) = Lt — 31— i) (11d)
f( 4; t) — gm,O—%(gm Oﬁé’m,z) M%(gm,Z*CmA)' (116)
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EVALUATION OF INTEGRALS IN MOLECULAR STRUCTURE 225

The expressions (11¢) to (11¢) are written in terms of differences in order that recursion
formulae between the {’s may be exploited. These formulae include (7) and (8) above,

and also Y
Pra—tu=(21=1) =, (20 3) .y — (201) 7, (12)

t2+72

G290 = (272“ ) pn 1 (n—z)pn—2~2(n+1)pn° (13)

For values of £ greater than 4, the f functions can be found from the general expression

2741
Flmks;t) = 'zo( 90 Rt (L ), (14)
Jj=
where Rt = f:Pj (cos0) coskOsin 6 df. (15)

Values of the quantity R¥ are listed by Rosen (1931), for j, £ ranging from 1 to 10. In general,

R% has the value
gy (FHS
1z (27
i+ k.( 3 )‘

M :(’fg—f)l (k—i—j-{—.l)! 1)

when £—j is an even positive integer, including zero, but it is otherwise zero.

As a result of this, the function fin (9) may be supposed known, so that the final evaluation
of the J integral is reduced to one single integration. This integration may either be per-
formed numerically (see later), or it may be completed analytically as the sum of certain
Z functions defined by

Zpnialor) = [ e, (1,65 7) teide (7)
0

Particular cases of (17), corresponding to important low values for the parameter 7, may be
introduced as

Gpilir) = [ ey, (1,8 1) ide (189
0

Pou(er) = | eip, (1,55 7) evidr (185)

Methods of dealing with the Z, G and P functions analytically are deferred to a later
paragraph.

4. NUMERICAL INTEGRATION OF THE Z FUNCTIONS

Notwithstanding that these Z integrals can be reduced to standard mathematical functions,
we have found that the alternative of numerical integration in (9) is often more convenient
in practice. This arises from the fact that the geometrical dependence of the integrand upon
the variable of integration is of the smoothly varying form shown in figure 2. Consequently,
any of the standard integration rules (Bickley 1939) may be employed. It turns out that for
large values of ¢ (frequently as low as />37), the integrand is effectively zero.
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t ——

Ficure 2

The procedure is then as follows. First the y, functions are listed, using tables of Bessel
functions of half integral order. Equation (7) now gives the p, functions, and equation (8)
the ¢, , functions of higher order m. Alternatively differences p,_,—p, can be found from
(12), and (q,_,—¢,) from (13). If the tables of Bessel functions are not adequate, the y,’s
and p,’s can be developed by recurrence relations. This may be systematized most simply by
a basic operation in which we use known values of y,_1,7,,#,-; and p, to infer y,,,; and p,;.
The first of these (7,,,)is found from (7), and the second (p,, ) from (12). The cycle may now
be repeated. Itshould be noted that

poy=(1+1) 7—1*‘3570} <1, b= (t+1) 7’—1—77’01 I>1, (19)
po= (T+1) v~y Do = (H“l)yo“"?’—l}
. . e—-lt—'rl + e—(+7) e—lt*'rl . e—(t-l-'r)
m Wthh VY= W Yo = W . (20)

In this process, as in several other recursion techniques to be mentioned in this paper,
a type of practical difficulty arises from what we shall term ‘differencing effects’. It can be
illustrated by reference to a recurrence formula

Xp1— Xy == An

in which x, and #,_, are the functions of orders z and n—1; a, is a coefficient and A, some
auxiliary function. Let these quantities all be positive. Then if

Xp-1% An

there is a loss of accuracy when x, is found from x,_,. If A, is not only of the same order of
magnitude as x,_;, but has the same leading digits, then repeated use of the recurrence
formula as a means of increasing the index 7 is not practicable. The formula could however
be used to depress n without involving any loss of significant figures. It then becomes
necessary to obtain x, for certain maximum values of 7 by some independent route.

In connexion with the cycle just described, since ¥,_;—7¥,11>>0; £y —Pns1>0, repeated
use of the process will result in serious loss of accuracy for certain ranges of the parameters.
It is then expedient to calculate Yy, ¥y_1, Vy-2 Yx-s from values of the Bessel functions, with
N equal to the maximum value needed for n. Then from yy and yy_, it is possible to find
Dy1; rom py_1, Yy_1> Yy-2 Yn-3 @ value is found for py_5 and the cycle repeated, leading
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ultimately to y, which can be checked from the explicit expression. To obtain ¥y, ¥y_1, Yy-2
and y,_5 values are needed of the Bessel functions. Ifthese are not tabulated use can be made
of (21a) to get Iy, and I_,, and of (214) to get K_, and Kj_,.

La(D) = gy €t (—3) + (e ()] (214)
Koi(d = [ (52) 9 3) (215)
0l = & il (210)

If the argument is small, (21a) cannot be used and the I’s are then obtained from the
infinite series (22) .

L) = mieeyn § bl o, (22)
When I,,, Iy_,, Ky_;, Ky_, have been found from these equations, they can be used to con-
struct Iy_,, Iy ; and K_,, Ky,, by means of the well-known recurrence formulae for the
- modified Bessel functions.

For very small ¢ and 7, and for large , it is impracticable to use the cycle iteratively in
either direction. The y, functions must then be obtained from Bessel functions, first
calculating the latter by (21), (22) or recurrence formulae, if they are not already tabulated.

When (8) has been used to raise m, a check can be obtained by the use of the recurrence
formulae between {,, , functions whose m-values differ by 1. These formulae include, for
example,

9= Q_nf_’r_;T{pn—l——pn+l} D (23)

5. ANALYTICAL REDUCTION OF THE Z FUNCTIONS

We now turn to the analytical method for evaluating the Z,, , ,.,(x,7) functions. Our
previous analysis shows that for J(k,1,m), values are needed of Z,, , ., where n assumes
integral values up to and including £, and with the same parity. On account of the relation
(8), we can steadily lower the index m in this function. Thus

Zm,n,l+%(K! T) = 12 Zm—Z,n,H%(K’ 7) +Zm—2,n.l+%(K> T)

2
“@n—_:‘l—){”zm—z,n—l,ug(", )+ (n+ l)Zm—Z,n+l,l+§(K> 7)}. (24a)

There are various other formulae of similar pattern. For example

r

Ly nii(K:7) = @n+1) P16 7) =Py (6, 1)} =P, 14 (5, 7). (240)

'This means that we need consider initially only values of Z,, , ,,, for which m = 0, 1.
According to (18), these are simply G, ;,; and P, ,,,.

The calculation of any Z can now be split into three stages. First we imagine the G, ;,, and

P, ;.; set out on two grids, in each of which 7 and / are measured along two perpendicular

directions, and we determine values along the edges of these grids. Second, entries in the
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body of the tables are found from those nearer the periphery by use of simple recursion
formulae. Finally, the Z’s of higher m value are found from the P’s and G’s, using equations
such as (24). The peripheral entries needed in the first stage of the evaluationof Z,, , ;,, are

(a) the G, ,,;inwhichy =0, ~1and 1 = 0,1...,m-+[; the P, ,,; in which » =0, —1
and A =0,1...,m+[—1.

(b) the G, .;. These are needed only if n>/-+1 and then v must assume the values
v=0,1..,n—l—1,for G, ,,andv=0,1,...,n—lfor G, ;.

On account of the fact, mentioned in §2 that the analytical expressions for all the {, ,
functions change when #= 17, the peripheral entries must be obtained by adding the
corresponding integrals in (17) and (18), over the ranges (0,7) and (7, c0). This is a very
annoying, but inescapable, complication. We may conveniently represent the contributions
from the lower and upper ranges by superscripts ¢ and s, so that

Gn,l+%(’<: 7) = Gi 13 (6,7) + G5, 114 (%, 7) (254)
Pn,l+%(K> T) = P;‘z,H%(K, T) =+ sz, l+1}(K7 T) . (25 b)

The separate partial range integrals can be expressed quite simply in terms of certain
integrals of the type introduced by Coulson (1937) and defined by

Bagwialis) = [ et (0 (26a)
0
Supralis) = [ e, (1) e (260)
Evidently Gl 1a(6,7) = Ky (1) P i (67) (27a)
G, 1a(k,7) = 1,44(7) Sl+%,n+&(’<’ 7). (27)

As a result of equation (19) it follows that
Pi—l,m-(’@ 7) = (1+1) Gi—l,lH&(Ka 7) —Gh, 114k, 7) (284)
P 14k, 7) = (7+1) G}, 114(, 7) —GLy j1y(k,7) (280)
P36 7) = Gy 1y (6, 7) + Gy (ks 7) —7G§, 143 (&, 7) (294a)
P§ (k1) = G§, 115 (5, 7) + Gﬁ,l+%(’<= T) “TGS—I,H%(K: 7). (290)

The B, 1;(,7) and S;,; 4, (k,7) can be reduced to incomplete gamma functions 4 (, x)
and 4; (£, x) defined as in (30)

Ai(, x) = f :e*ﬁftldt (300)
A5(E, %) = f “e-trildt. (30)
In terms of these
Bts7) = gy (e 1,7) + A 1,1} (31a)
Py ilo7) = o ldile—1,7) —Ailk+1,7} (314)

2m) ;

X

(]

Supaslsn) = [(5) 4ilc+1.7). (32)
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The A’s can be evaluated very rapidly, since

—&x
Ai(g ) = i1 (60—~ (33a)
(%) = 1“5 - (330)
A4(6,%) = A (G 0+ (33
Ag(ey ) = ;". (334
When § = 0, the 4 become merely A1

The calculation of 4: for large values of / starting from 4 and repeatedly applying formula
(33a) results in considerable differencing effects of the type described at the end of section 4.
In such circumstances, it is more profitable to start from the value of 4f in which / has its
maximum value, and to apply (33a) as a means of depressing the value of this index. To get
this value of 4! directly, use can be made of the infinite series expansion (33f)
Ai — ] amtx (6x)? . ) 33
(&%) =ae E o (1) ((+2) ... ((+j+1) (83/)
The P, ,.,(k,7), Sy nu(k,7) are constructed from P_; (k,7), P ,;(k,7) and from
S_; +1(k, 7) respectively, by use of the recursion formulae (34) and (35)

Pl =3[ @D (S L0 Py 6| = (=) Py en) | (39)

Ssualn) = o @) {7 K () =481 1) = (1= 1) Sopas(m) |- (39)

The functions P, ,, P, ;, and S_, ., can be expressed in terms of Legendre functions of the

second kind, (Q’s), and exponential integrals.

Py yfT) = JTI—)[onw)——EI«K—l)r}+El{(K+1)f}] (360
P ialm) = | 20000 = El(e—1) = Eif(e 4 1) 7 Ealle—1) )= Ex{ (1) 7}
(360)
Syl ™) = J (5) Blle+1) 7 (37)
where Qufe) = Hog|EE1l5 @u(a) = w0
and E, () ::_El( %);  Ey(x) = e *—xE ().

The preceding equations suffice for the P_; ., and S_, ,,, when «+ 1. If, however, x =1,
(864) and (364) become modified to :

Py, (1,7) = g (r+log 2r-+ E (21} (380

P, ,(1,7) =3—(12ﬂ—){y+1og21—2+;—E1(21)~;- A(2n)), (380)

where 7y is Euler’s constant.

Vol. 243. A. 31
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In the calculation of the functions P, ,,, and S_; ., for large values of 7, the equations
(34) and (35) must be applied repeatedly. It is useful, in these circumstances, to have an
independent check on the final value of the P, ., and §_, ,,, for the highest value of
n needed. For the former, use can be made of the mﬁmte series expansion (39) with

=—1.

_ee (il
Fosnnlon) = gy 2 i1an 1oy y1 A mn(on); (89)

whilst for the latter, an expansion can be obtained from (40)

Smst) = JO)] 2 iy v 10+ $ SHSEEE (e )
(40)

In (40), the second summation is ignored when />#, and the first when /<0. The £;(x)
are the generalized exponential integrals, needed also in (36) and (38):

Ej(x) = J Te‘”t‘f dt.

Equation (39) may also be used to generate P_, ,,,(k, 7) for the highest n needed and the other
P_, .., canthen be found by applying the recursion formula (34) as a method for depressing 7.
In this way differencing effects are overcome.

The P, ,., and S, ,,, are obtained from the P, .., and S_, ,,, by putting /= 0 in the
formulae (41) and (42). The ‘starting values’ of £, ,,; and S, ., are found from (31) and (32)

PI+%,n+%(K> T) = PH—%,n—%(Kﬂ 7)—(2n—1) R () (41)
Sl+% iy (K T) = Sl—i—%,n—%(Kﬁ T)+(2n—1) Sl—%.« -3 (K> 7). (42)

Again, with these P, ,,, it may be advisable to obtain a value corresponding to the hlghest
n from (39) and then to use (41) to depress this index.

The formulae which have been listed suffice for the evaluation of the peripheral G and P.
The other G’s and P’s can now be tabulated, by use of the equations

2n—1

TPn—l.z+;(K, T) = Gn~2,l+%(K7 T) — Gn,l+%<K9 7) ' (43)

1
Pn—2,l+%(K9 7) —Pn,l+%(/<3 7) = (2n—1) {; Gn—l,l+%<K’ 7) —I—TGn—l,l—-é(K’ T)}
—(2n—=3) Gy 1, (k,7) = (20+1) G, 4 (k,7). (44)

The first 'step is to values of G, ,,, using G_, ;,, and P,,,,, and equation (43). Next, the
differences P_; ;,,(«x,7) —P; ;,,(k,7) are found from appropriate values of G_, ,,,(«,7),
Gy, 14:1(&,7), Gy 144(k,7), using (44). The P, ;,,(k,7) can then be found. The cycle can now
be repeated indefinitely. In conclusion it may be added that for awkward ranges of the
parameters and for large values 7, ‘differencing effects’ occur. These can be overcome by con-
structing G’s of high n from equations (254), (27), (39) and (40); from these G’s, the P’s of
high n can be found, and the recursion cycle applied in reverse,
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6. NUMERICAL EXAMPLE

To illustrate the use of the method we have considered a single J integral which can
actually be evaluated in several distinct ways. In addition we have considered the systematic
evaluation of Z functions for a couple of pairs of values of the ‘parameters £, 7.

The J integral which has been considered is

iz f e-arafrogin? 0, V.

In terms of the functions listed by Coulson (1942), this can be reduced to

I (a5, p) —7J41(06,/5’, IEY )
BHKL (B, ) — Kys(B, )}, 2= f.

These expressions were evaluated using the formulae of Coulson’s paper. In terms of the
functions of this present paper, the integral reduces to

o (e ]
ﬁ’;fo e }{po(1,1; 1) —po(1,¢; 7)} dt.

This was evaluated numerically, and also as

8w
gm{Po, § (K, 7) — P2,-z—(’<a 7)}.

For the numerical integration, 15 points spaced uniformly over the range 0<<¢< 7 were used.
A value was obtained by use of Simpson’s rule. An almost identical value was obtained by
adding the contributions from the ranges (0, 5) and (5, 7), found respectively by use of the
ten- and four-strip rules. For the values of the parameters « = 1;7 = 3, values obtained were

(Simpson’s rule): 05078

numerical mtegratlon {(accurate I‘UICS) . 0-5077

expansion in Z functions: 0-5076
method of Coulson 1942: 0-5076

This shows that the method is correct and manageable. It also shows that for most purposes
the method of numerical integration is entirely adequate. This method has the great
advantage of not requiring any of the analysis from equation (24) onwards.

As regards the systematic tabulation of the Z functions, we found that no unforeseen
difficulties arose during actual numerical computations when using several values for the
parameters &, 7. In this work it must be remembered that a peripheral G is obtained as the
sum of G’ and G°. Now to get these G’ and G* terms B, ,,,(«,7) and S, ,.4(k,7) are
multiplied by K,,,(r) and I,,,(7) respectively. Since K,,,(r) decreases roughly as e~ and
I.,(7) increases roughly as e, the $’s must be evaluated to several decimal places more than
the P’s. '

Although the need occasionally arises for the evaluation of one isolated J integral, we
shall see in part II that much more frequently we require the compilation of blocks of

related J’s. These are J’s such as (1) with the same a, §, p, but with different «,v, p, ¢. Such
31-2
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blocks are most conveniently calculated from the Z’s, developing the latter by use of the
explicit expressions given in this part; the larger the block the more economical of effort such
calculations become. ‘

7. DIFFERENTIATION OF THE Z FUNCTIONS

This is an important consideration in variational calculations, when energy is to be
minimized with respect to variable molecular parameters, such as the internuclear distance
and the screening constants. The differentiation of the Z’s with respect to either of these
quantities results merely in other Z functions.

Thus differentiation with respect to « can be effected using

J
%{Zm,n,H%(K) 7)} = _Zm,n, l+%(Kﬂ T)' (45)

For differentiation with respect to 7 we have

d , '
E.{Gn,lﬂ(/(: 7)} = Kn+5—<7) B+%,n+%<Kﬁ 7) +In+é(7) Sl+%,n+%(/<3 7), (464a)

where I’ and K’ denote the first derivatives of the Bessel functions. There is also the recursion
formula:

2 (G, 136,70} = (2041) TG, oy (7)) 27w i

2n+1)2

=Gy, 1 (67) = Gy (6 7) — (*"27‘)* G, (k,7). (460)
Values of I, ,,(7) and K}, ,(7) can be found from I’s and K’s by use of the standard recursion
formulae (Watson 1944).

8. TABULATION OF NECESSARY QUANTITIES

The general question of tables must now be considered more fully. First, we require
Bessel functions of half integral order and imaginary argument. Some tables exist for
functions of the first kind (Dinnick 1933) and of the second kind (Carsten & McKerrow
1944). However, these are inadequate for the calculations which we have described. Small
tables are therefore provided (tables 1 and 2). The numerical values were obtained from the
equations (214a), (215), (21¢), except for some half dozen entries in table 1 which were found
by means of the infinite series (22). Our values for the K’s are in complete agreement with
those obtained by previous workers, where they overlap.

The construction of @’s for substitution in equation (36) presents no difficulty. Adequate
tables are now available for most of the exponential integrals —Ei (—x). The generalized
exponential integrals ,(x), needed in equation (40) have also been tabulated recently for
orders up to 20 (Placzek 1946).

9. COMMENTS ON THE DERIVATION OF THE FORMULAE

The various recursion formulae can all be obtained from the well-known recursion
formulae between the I’s and K’s (Watson 1944). The formulae for the {, , are obtained
first, and the formulae for the Z,, , ,,, follow immediately from these.
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TABLE 1. BESSEL FUNCTIONS OF THE FIRST KIND, OF IMAGINARY ARGUMENT, AND HALF INTEGRAL ORDER

L) = A(10)?

I(x) Ii(x) Iy(x) Ig(x) Ig(x) Ig(x)
x P 4 P 4 P 4 P 4 P 4 P
05 (0) 1-272390 (—1) 5879931 (—2) 9-640347 (—3) 9572244 (—4) 6-810360 (—5) 3774019
1-0 (0) 1-231200 (—1) 9376749 (—1) 2-935253 (—2) 5709891 (—3) 8030780 (—4) 8834469
1-5 (0) 1-532 524 (0) 1-387162 (—1) 6077498 (—1) 1716620 (—2) 3554311 (—3) 5-794183
2:0 (0) 2-122 592 (0) 2-046 237 (0) 1099473 (—1) 3970271 (—1) 1069055 (—2) 2-285 787
2:5  (0) 3-094 516 (0) 3053094  (0) 1-873278 (—1) 8051595 (—1) 2629594 (—2) 6-887302
30 (0) 4-637 758 (0) 4-614 823 (0)  3-099 483 (0) 1515339 (—1) 5739177 (—1) 1-761981
35 (0) 17-068 098 (0) 7-055 219 (0) 5052 321 (0) 2724 658 (0) 1159952 (—1) 4-047 541
4-0 (1) 1-089 441 (1) 1088710  (0) 8-172633 (0) 4757 627 (0) 2225600 (—1) 8628275

a
/)

45 (1) 1693100 (1) 1692682 (1) 1-316948  (0) 8147165  (0) 4117078  (0) 1742822
50 (1) 2647995 (1) 2647755 (1) 2118444 (1) 1376688  (0) 7-417560  (0) 3-382 298
55 (1) 4162513 (1) 4162374 (1) 3405718 (1) 2304710 (1) 1-310527  (0) 6-367 662
60 (1) 6570584 (1) 6570504 (1) 5475500 (1) 3-832753 (1) 2281539 (1) 1-170 957
6-5  (2) 1040803  (2) 1040798 (1) 8806801 (1) 6343305 (1) 3927336 (1) 2-113866
(2) 1653571  (2) 1-653568  (2) 1417347  (2) 1046133 (1) 6701084 (1) 3-760 253
(2) 2633833  (2) 2633831  (2) 2:282655  (2) 1720769  (2) 1-135476 (1) 6-609 915
(2) 4204564  (2) 4204563  (2) 3678994  (2) 2:824941  (2) 1913406  (2) 1-150 710
6725177  (2) 6725176  (2) 5933980  (2) 4630831  (2) 3209962  (2) 1.987 333
(3) 1077554  (3) 1-077554  (2) 9578260  (2) 7582789  (2) 5365600  (2) 3-409 545
(3) 1729202  (3) 1729202  (3) 1-547181  (3) 1-240619  (2) 8942238  (2) 5817172
(3) 2778785  (3) 2778785  (3) 2500906  (3) 2-028513  (3) 1-486650  (2) 9-878 579

THE ROYAL
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TABLE 2. BESSEL FUNCTIONS OF THE SECOND KIND, OF IMAGINARY ARGUMENT, AND HALF INTEGRAL ORDER
K, 4a(x) = A(10)#
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Kiy(x) Ey(x) Ky(x) Ky(x) Ky(x)
x P 4 P 4 P A P 4 P
05 (0) 1075048 (0) 3-225 143 (1) 2-042 590 (2) 2-074 842 (3) 2-925 205
1-0 (=1) 4610685 (—1) 9-221370 (0) 3-227 480 (1) 1705 953 (2) 1-226 442
15 (-1) 2283351 (—1) 3-805 584 (—1) 9-894 519 (0) 3-678 731 (1) 1-815 687
2:0 (—1) 1199 378 (—1) 1799 067 (—1) 3-897978 (0) 1-154 401 (0)  4-430 201
2:5 (—2) 6506 594 (—2) 9-109 232 (—1) 1-743 767 (—1) 4-398 458 (0) 1-405 945
30 (—2) 3-602 599 (—2) 4803 465 (—2) 8406063 (—1) 1-881 357 (=1) 5230439
35 (—2) 2-022 997 (—2) 2600 996 (—2) 4252422 (—2) 8675885 (—1) 2-160 419
40 (—-2) 1147762 (—2) 1-434703 (—2) 2223790 (—2) 4214 440 (—2) 9-599 060
45 (—3) 6563395 (—3) 8021927 (—2) 1191135 (—2) 2125676 (—2) 4497741
50 (—3) 3776 613 (—3) 4531936 (—3) 6-495775 (—-2) 1102771 (—2) 2193 457
55 (—-3) 2184032  (—3) 2-581128 (—=3) 3-591920 (—3) 5846510 (—2) 1-103 293
60 (—38) 1-268 287 (—3) 1:479 668 (—3) 2-008 121 (—3) 3-153102 (—3) 5686739
65 (—4) 73900760  (—4) 8527801 (—3) 1-132 667 (—38) 1724062 (—3) 2-989 349
7-0 (—4) 4319660  (—4) 4936754 (—4) 6435412 (—4) 9-533 477 (—3) 1-596 889
75 (—4) 2531166  (—4) 2-868655 (—4) 3-678 628 (—4) 5321074 (—4) 8-644 964
8-0 (—4) 1-486 480 (—4) 1-672 290 (—4) 2113589 (—4) 2993283 (—4) 4732712
< 85 (—5) 8746763 (—5) 9775794 (—4) 1:219 704 (—4) 1-695053 (—4) 2615630
= 9:0 (—5) 5155708 (—5) 5728 565 (=5) 7-065 230 (=5) 9-653 693 (—4) 1-457 366
< 95 (—5) 3043 691 (—5) 3-364 080 (—=5) 4106 032 (—5) 5525149 (—5) 8177194
S e 10-0 (—5) 1-799 348 (—5) 1979 283 (—5) 2-393133 (=5) 3-175 849 (—5) 4-616 227
@) E 11:0 (—6) 6311 380 (—6) 6-885 141 (—6) 8189145 (—5) 1-060 748 (—5) 1-493 936
e 12:0 (—6) 2222980  (—6) 2-408 228 (—6) 2-825037 (—6) 3-585 327 (—6) 4916 478
1) 13-0 (=7) 17-857 059 (=7) 8461448 (=7) 9-809 701 (—6) 1-223 441 (—6) 1-639 746
T 14-0 (=17) 2-785 308 (=7) 2-984 258 (=7) 3-424 792 (—17) 4207 398 (=17) 5528491
- 8 15-0 (—8) 9-899 131 (=7) 1-055 907 (=7) 1-201 095 (=7) 1456 272 (—=7) 1880688
- 16-0 (—8) 3:526 048 (—8) 3746 426 (—8) 4-228 503 (—8) 5067833 (—8) 6-445 680
<z 17-0 (—8) 1258 431 (—8) 1-332 456 (—8) 1-493 570 (—8) 17711741 (—8) 2223110
Yo 18-0 (—9) 4499073  (—9) 4749021 (—9) 5290576 (—9) 6218 626 (—9) 17708 931
I= 190 (—9) 1610972  (—9) 1-695760 (—9) 1878724 (—9) 2-190 161 (—9) 2-685625
32 - 20-0 (—10) 5776374 (—10) 6065193 (—=10) 6686 153 (—10) 7-736 731 (=10) 9-394 009
(7]
O‘é’ 21-0 —10) 2073797 —10) 2-172 549 —10) 2-384 161 —10) 2-740 206 —10) 3-297 563
:E'é 220 —11) 7-453 667 —11) 7-792 470 —11) 8-516 277 —11) 9-727 988 —10) 1-161 155
[y

24-0
25-0

—12) 9-657 990
—12) 3-481191

—11) 1-006 041
—12) 3-620 439

—11) 1-233 448
—12) 4-403 568

—11) 1-451 310
—12) 5-148 643

—11) 1-091 554

( ( ( ( (
230 E—u) 2-681 779 5—11) 2-798 378 E—u) 3-046 785 E—u) 3-460 722 g—u) 4-100 048
§ E 2—12) 3-915 644 E E
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The expressions (31), (32) and (36)—(40) for the P and S functions can be obtained from
the explicit formulae (21), (22). To obtain expressions for the P, ,(«,7) functions, it is
necessary to use the result

[Cemrgaa= [() e, (47)

This infinite integral can be used only when x> 1. By a long argument, which we shall not
reproduce here, it can be shown that provided the definitions appropriate to the case k<1
are used for Q,(x) and for Ei{— (k—1) 7}, then the result (36) is still valid. Furthermore, as
a by-product of this proof, the formulae (384) and (385), for the case x = 1, are obtained, as

a consequence of the result
|3 — © ot
f di— f € dt—. (48)
o ¢ Lt

In conclusion, it may be mentioned that approximate formulae may be constructed for the
Z functions, valid particularly at large internuclear distances, and large k. These approximate
expressions are rather clumsy, and several different cases have to be considered. For these
reasons, we shall not describe them here.

PART II. OVERLAP, RESONANCE, COULOMB, HYBRID AND
OTHER TWO-CENTRE INTEGRALS

10. INTRODUCTION

This part deals with certain integrals which result from the approximations now used in
the theory of molecular structure. The relevant basic functions have already been discussed
in part I, the results of which will be exploited.

The integrals which will be considered are the so-called Coulomb, overlap and resonance
one-electron integrals, the two-electron Coulomb and hybrid (Coulomb-exchange) integrals,
and the penetration integrals. These all arise in calculations which deal with systems of two
nuclei and one or more electrons. Formal definitions are given in equations (49) to (51). These
involve atomic wave functions, which are denoted by symbols of the form W'(X, 7). The letters
X and { define respectively the nucleus on which the wave function is based, and the electron
on which it operates. The two nuclei are referred to by the letters 4 and B. When necessary,
the electrons are specified by numerals 1 and 2. The distance from nucleus X to electron ¢ is
denoted by 7,;, and the distance between electrons 1 and 2 by r,,. The primes on the 'I”s show
that they may be of different analytical form.

Resonance and overlap integrals involve just one electron; so also does the integral (49¢)
which is most conveniently termed a ‘one-electron Coulomb’ integral:

overlap integral f W(4,1) V' (B,1)dV, (49a)
resonance integral f;l« W(4,1) ¥ (B,1)dV; (495)
b1

Coulomb integral f (4, 1) W (4,1) d. | (49¢)
bl
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Coulomb integrals of another type (504), and hybrid Coulomb-exchange integrals, (505),
occur in connexion with two-electron systems. Exchange integrals (50¢) also appear in such
calculations, but their evaluation will not be considered in this present paper.

Coulomb integral f f W(4, 1) (4,1) - ¥ (B, 2)F"(B,2) dV, Y, (504)
12

hybrid integral f f P(4,1) V' (4,1) ;1—‘F”(A, 2) P (B, 2) dV, dV (50)

12

A A

exchange integral f f W(4, 1) W'(B,1) = W"(4,2) (B, 2) dV;dV,, (500)
12

The electrons in the hybrid integral display an allegiance intermediate between that
found in the Coulomb integral and that found in the exchange integral. In (504), each
electron is controlled entirely by one or other nucleus. In (50¢), both the electrons are
shared between the two nuclei. In (505), one electron is dominated by one nucleus and the
other is shared. Mention may also be made of the mononuclear integral (50d):

SOCIETY

mononuclear integral f [ P(4,1)¥(4,1) ri P(4,2) W (4, 2) dV, V. (50d)
_ . 12

OF

Although integrals of this type involve only one atom, their values are required in calculations
dealing with two-atom systems. Furthermore, since they represent limiting cases of the
integrals (50a) to (50¢) they provide a check on the values found for these latter integrals at
small internuclear distances.

Penetration integrals represent the energy of an electron in the field of an electrically
neutral atom, X. The potential of an electron ¢ due to this atom can be denoted by H* (i),
and can be calculated by classical methods. The Coulomb-penetration and exchange-
penetration integrals are then defined asin (51 ) and (515). We take nucleus 4 as belonging
to the neutral atom.

Coulomb-penetration integral fH;“(l) Y(B,1)¥'(B,1) dV;, (5la)

exchange-penetration integral JH X)W, 1)¥(B,1)dN. (510)

A A

The former measures the energy of an electron based on one atom, due to the field of
a different, neutral atom. The latter measures the resonance energy between two atomic
orbitals, one of which is based on the neutral atom. '

The integrals of (49), (50) and (51) result from both the usual molecular orbital and
valence-bond approximation. It is hoped later to generalize the method to deal with the
integrals which result from more refined types of approximation (see for example, James
& Coolidge 1933; Coulson & Duncanson 1938; Frost, Braunstein & Schwemer 1949).

By dealing with the three types of integral (49) to (51) in the same way, we reduce them
to one single set of subsidiary quantities. Hitherto, integrals of different classes were treated
separately, each with its own auxiliary functions. An additional advantage with our present
treatment lies in the fact that no complications arise when the nuclei are of different elements.

SOCIETY

OF
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11. WAVE FUNCTIONS

The value of a molecular integral depends upon the analytical form and numerical para-
meters of its component wave functions. In what follows we shall be concerned with functions
taken from table 3. This contains the familiar nodeless functions of Slater (1930). The more
accurate ‘orthogonalized’ wave functions which contain nodes are, however, merely linear
combinations of these nodeless ones, and need not be considered separately (Moffitt & Coul-
son 1947). Itis also possible to obtain approximately self-consistent atomic orbitals as linear
combinations of these nodeless functions.

TABLE 3. WAVE-FUNCTIONS

1s (k3|m)t e=*r

2s (k53m) 4 r e~*

2, ()

2p, (B[m)* (y) e

2. 1)

3s (27 [45m)% 12 e~Fr

3 x

35;]» (2k715m)% r (Eyg]‘ ehr
3. 1)

3d. (k7/187)% (322 —12) e~*r
3de} (x2)

3d,, (2K7[37)* {(yz)} e~
3, (%)

3ds_, (k7/6m) % (22 —y?) e~Fr

We may refer to any of these functions as ¢y, ¢,, .... Where necessary the ‘character’ of the
wave function will be indicated by modifying the symbol ¥'(X, ¢), introduced earlier, to for
example W'(X,7; 2p,). The symbol C(¢;, ¢,) will be used to denote the one-electron Coulomb
integral and the symbol S(¢,, ¢,) to denote the overlap integral derived from the two atomic
orbitals, ¢; and ¢,. Similarly, R(¢;,¢,) will be used to denote the resonance integral involving
orbitals ¢; and ¢,. In this latter case, ¢, will always be taken as the orbital associated with the
nucleus labelled B on which the radial operator is based (see equation (495)). For example,
if ¢; and ¢, denote 1s and 2p, orbitals respectively, then

C(15,29.) = L (R [exp [ (hy-ks) ] 2 cos Oy

1

R(1s,2p,) = (/f?/fé)”’fCXP [— (kyrar+ky751) ] cos 0y, dVy

R(2p.,15) = - (KR! [exp [ (kara-+£y10)] 2 cos T
bl

R

S(1s,2p,) = p (/c?/cg)*fexp [ — (kyrar +Eo751) 1751 cO8 0y AV,

For the two-electron Coulomb integral the symbol C(cy,...,¢,) will be used. In such
a symbol, the ¢; and ¢, will be associated with nucleus 4 and electron 1, whilst the ¢; and
¢, will refer to nucleus B and electron 2. For example, if ¢;, ¢, ¢; and ¢, denote respectively
Ls, 2s, 2p, and 2p, orbitals

1
C(15,255 2, 20,) — 2 (RUSISY3)! [ [oxp [— (ki -+ £2) o — (o) 73]

2
T3 .

x ~4L-b2gin2§,, cos? ¢, dV, dV.
"2
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EVALUATION OF INTEGRALS IN MOLECULAR STRUCTURE 237

The symbol (¢, ¢y; ¢5, ¢4) Will be used to denote a hybrid integral derived from the four
atomic orbitals ¢, ...,¢,. In such a symbol, the functions ¢; and ¢, are associated with
electron 1, and ¢5 and ¢, with electron 2; also the first three atomic orbitals ¢,, ¢,, ¢5 are centred
around nucleus 4, and the fourth one, ¢,, around nucleus B. For example, if¢;, ¢,, ¢5, ¢, denote
1s, 25, 25 and 2p, orbitals respectively, then

1
1(1s, 253 25, 20,) = 5o (KUESAAD [ [exp [ (ky+£2) 70— Rytaa—Ry7sa]
x Ta1’a2"e2 ¢ b,,dV,dV,.
12
Finally, the symbol M(c,, ¢,; ¢4, ¢,) will be used to denote a mononuclear integral. The
functions ¢,, ¢, will be associated with electron 1, and ¢,, ¢, with electron 2. Thus if ¢;, ¢y, ¢5, ¢4

denote 1s, 25, 2p, and 2p, orbitals respectively, then
M(1s, 255 2p,, 2p,)

2
= 73 (RUERSIYS)? [ [exp [ (ky45) 7 = (hy Ky 5] 2 2 sin 0,082 ;T

Aya Avs

Y
A
=

y

FIGUrE 3

Co-ordinate axes ¥, y, z are required for complete definition of these functions. Each
nucleus (figure 3) is taken as origin with its z axis directed towards the other nucleus. The
distance between the two nuclei is p. The two x axes are parallel, but otherwise arbitrary,
so that the two y axes are parallel: one system is right-handed, the other is left-handed. We
use either Cartesian co-ordinates, or as in part I, polar co-ordinates (7,, 0,, 4), (r,,0,,¢). This
notation unambiguously describes all the integrals with which we are concerned.

We shall now deal with the integrals class by class, and show how in every case, their
evaluation can be made to depend upon the basic Z functions of part I.

12. REDUCTION OF ONE-ELEGTRON INTEGRALS

The one-electron integrals (49) are of the form of the J integrals of part I. Their evaluation,
either by a final numerical integration, or by the analytical method of part I, is immediate.

Vol. 243. A. 32
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For certain of these integrals, explicit expressions are given by Coulson (1942). In addition,
numerical values reliable to 2 or 3 significant figures, are listed for a few of the simpler
overlap integrals by Mulliken, Rieke, Orloff & Orloff (1949), sometimes for quite wide
ranges of the parameters involved. By a change of normalizing factor, these tables can be
made to provide values for several resonance integrals.

Where necessary, all overlap integrals can be reduced to the form (52)

S(ern ) = Moy ) [ “erhtbatif (e, c50) e (52

Both the N.’s, which depend on the screening constants, and the f,’s which are functions of
f, can be drawn from table 4. Here and elsewhere we use the subscripts s,7,¢, and ¢ for
quantities relating to overlap, resonance, two-electron Coulomb and hybrid integrals

TABLE 4. OVERLAP INTEGRALS

S(eea) = [, 156) W (B0 4V, = Niferey) [ etomntf,(epcas )

................................................................

pn"__pn(l’ t; k2p)’ 9= qn(la t; k2p)3 §3,n= €3,n(la t; kz/’)

3 2 Ny(ers ¢9) Ji(egs ¢35 8)
L 4k Ip)} Ig? %o
2s ;s i:gcc ;3';%) %kicsgf* ;‘Po
4 3R1IP)* Re 9o
2p, 2ﬁx} £(k5/p)t k5 2
2, 2p, 3(k3/p)*® k3 (po—12)
2. s 4(K[p) kS i,
2s 4(k3/3p) % k33 iq,
2p, 4(k3/p)* k33 koptpy —2{po—3(Lo—12)}
3s 1s §(2k3/5ﬂ) bEt 2py
25 §(2k{/ 15p)% k34 2q,
2p, 3(2ki/5p)* Ky sz(/szJo —ipy)
3s as(ki/p)* k3t 2830
B 2, 4(267/150) 471 Bty
3p, a5(k{[p)* k3t (90— q2)
3p, 2p, as for S§(3p,, 2p.)
3p, as for §(3p,, 3p.)
B, s 4(281/15p)1 I tzpl
2s 5(2k{[5p)* k3*
2p, 4;}(2“/ 15p)% ky* tz[kzpﬁl —t{po—3(bo—1P2)}]
3 5 (Hf30) !
3p. 15(k{/p)* k3* tz[kzpql —#{go—3(90—92)}]
3d,: és %%I]g;% %% iij tzpz
S 3
g/’z %Ei;ﬁ ;é z:‘: tz[kzpl’z —t{ﬁl 3 —19)}]
S 9 p)?
3p, §(k7/ 15p)% kz tz[/szz — g —3 a1 —g5)}]
3d.: s(ki/p)*® k3* 2lk3pp, — “kzpt@l’l + 31’3) +12(3po+ 702+ 58 44)]
3dxz 2px %8<2k7/3p)% k 2 tg(pl _pS)
30, 55 (kif3p) Oy
3d,, T5(ki/p) = k3* t3[k2p([)1 —p3) —t{§(bo— o) + 7 (D2 —14)}]
3d,, 2p, as for §(3d,,, 2px)
3p,, as for $(34,,, 3p,)
3d,, as for §(3d,,, 3d 2)
3d 2__ I 3dx! 3\

3d, 3d _yf 5 (k/p)* k3t t4{5(po—p2) —7(b2—14)}

*Y
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EVALUATION OF INTEGRALS IN MOLECULAR STRUCTURE 239

respectively. The f;’s are expressed in terms of y, p and other { functions of part I; these
always have as arguments (1,¢; k,p). The evaluation of such expressions is discussed
exhaustively in part I. Except when ¢, and ¢, are identical, two different expressions can be
obtained for S(¢;, ¢,) depending on which of the two wave functions is expanded about the
distant origin. Thus for §(3d,., 1s) we have from table 4
S(3dy 15) = § (K/2p) Ky [ etk (1, 85 iy p) .
0

But another expression, equally valid, is
S(3ds, 15) = § (RY2p) k2| e o0h (RS (1, 5 by ) — 2y pip(L, 85 ) +Eo(L, 5 Kup)}
0

This is much more complicated. The expressions actually quoted in table 4 are in every case
the simpler of the two possible. The alternatives, if wanted, can be obtained without difficulty.
They could be used to provide a check on numerical results.

In terms of the p and ¢ functions, the resonance integrals can be put in the form (53). The
N,’s and f,’s can be drawn from table 5. The p’s and y’s still have as arguments (1, ¢; £, p).

R(ee) = Ny{eryc) [ et ey, 55 1) . (53)
0
TABLE 5. RESONANCE INTEGRALS
Rlen o) = [¥(4,15 0) ¥(B, 25 ) r3la¥,

o0
= N,(c}, 63) fO eRillkst f (cy, cp3 8) dt

..........................................

..........................................

€ 6 ’ N, (¢, ¢5) Jo(ers €55 1)
Is 1s 4(k3[p)* k3! Yo
2s 4(k3[3p): k3! Do
2p, 4(k3[p)* k3! kapyo—1ty
25 1s 4(k3[3p)t k32 o
2s 3(K3/p)* k32 thy
2p, 4(k3[3p)* k3* t(kopyo—1ty1)
o o) 4RI K 2
2p, 1s 4(K}/p)* k3? n
2s 4(k3/3p) % k32 th,
2, 4(k3[p®)* k3? k3 0%y, —kopty,+2p}

For the one-electron Coulomb integrals, it is possible to avoid the analysis of part I. These
integrals could all be evaluated at once using the table of one-electron integrals of Coulson.
Alternatively, 1/r, can be expanded as an infinite series of spherical harmonics about nucleus
4. On integrating, very few terms survive, and these are precisely the same as those obtained
by the first method. In our present case, we have used the self-consistence of the pairs of
expressions to check their reliability. These one-electron Coulomb integrals are listed in
table 6, in terms of certain quantities which we denote by the symbol j,. These j functions

are of the form j(r) = E(r) —F(r) e

32-2
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240 M. P. BARNETT AND C. A. COULSON ON THE

in which the E(r) and F(r) are simple polynomials. Explicit expressions for the necessary
J’scanbefoundintable 11. For these entries of table 6, thej’s have asargumenty = (k; +£,) p.
For convenience we put &, = (k,+£,).

TABLE 6. ONE-ELECTRON COULOMB INTEGRALS

Clay 0= [¥(4, 15 0) ¥(4, 15 ) rila

kaz %(kl +k2)> n= 2kap

A A

g G Cley, 69)
Is Ls ‘ (RRED)E k=7, (n)
> 2s B(RYA3(3) 1 A% ()
—~ 2p, 3(K1KS)E K%~ (1)
M 25 2s 12(AA3)® ko= (7)
O 2. L(RTRY/3)® kP25 ()
o EAE LB K 5i(n)
« 2. 2. T(RRRD) Y Kt~ (m)
13. Two-ELECTRON COULOMB AND HYBRID INTEGRALS
. The integration over the space of electron 1 is the same for both Coulomb and hybrid
° integrals (504) and (505) and the mononuclear integral (50d). We can denote it by the
symbol G(¢;, ¢,; 2). Then we have
1
Gley, 05 2) = f LW(4,150) V(4,1 05) T, (54)
12
These G functions are effectively identical with one-electron Coulomb integrals, electron
2 in the former corresponding to nucleus B in the latter. Their evaluation therefore requires
no further explanation. The G’s are obtained in terms of the j’s of table 11, the j’s argument
is now 2k,7,,. The G’s are listed in table 7
TaBLE 7. G(c,, ¢y; 2) INTEGRALS
Glors o35 2)= [¥(4, L; 0) (4, 15 ) rif a,
o
) ko= 3(kitka)s  Ju=Jn(2Rat02)
G G G(ey; ¢33 2)
i s 1s HARD! K
a8} 2s 4(k3k5/3) a a2j2
e 2px 1
O 2p, $(RPRR)* K5 13 (!/az) Js
o) 2,
A 2 % (K ES)E K25 1215,
2px1 1 ( a2) .
2p, R GLIRIM A PRV
2sz Za2
" 2, 2p, (%%)
©) Zpy 2py (kSkS)%k 7[ra2.]8+%ra2 (yaZ) J7]
2pz 2172 ( a2)
2px 217_11 ZyaZ .
2p. 2p, sz(kiA3) A7 ra21(xa22a2 J’]7
2py 2[)1 ya22a2
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The integration over the space of electron 1 thus provides a known function of the co-
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ordinates of electron 2. We can write

A A

when ¢, and ¢, are s orbitals. Similarly

M(pr: 62; 2px: 64) = M(pr’ 62;2ﬁy: 64) = M(sz, 62; sza 64)

OF

Clegy ennty) = JG(CI: ) W(B,2; c3) IF(B: 2; ¢,) dl,

L(cgy onyy) = f Gley ¢ys 2) W(A, 2; ¢;) (B, 2; ¢,) dV,

Moy s60) = [ Glon a3 2) W(4, 25 0) W(4, 25 ¢ ¥y

The rest of the integration is now quite straightforward for the mononuclear integrals.
Expressions are listed for these in table 8, in terms of the parameters

ky=%(ky+ ko) by = 3(ks+ky)5 x = kyl(ky+ k).

In the isolated atom, since 2p,, 2, and 2, orbitals are completely equivalent,

M(cb Cos 2px3 21{7::) = M(Cl’ Cos zﬁy, 2py) = M(cla Cos 21{722 2[)2)

x

when ¢, and ¢, are s orbitals. Furthermore

M(pr’ 205 20, 217::) = M(2l7y’ 2py; pr: 2]’_1/) = M(sz, 2p.52p,, 2pz)
M(pr, 20,5 pr’ pr) = M(pr’ 20520, sz) = M(2l7y’ pr; 2p., 2/7z)

)

y
S

51
1s

Is

2s

OF

2p,

1s

1s

2s

2p,
2s

2p,
2p,

2p,

Is
2s

2p,
1s

2p,

1s
2s

2s

2p,
2s

2p,
2p,

’ M(pr’ 2]7_1/; 20, 2[)1/) = M(me 2p,; 2P, sz) = M(2l7y’ 2p,; 2ﬁy’ sz)'

TABLE 8. MONONUCLEAR INTEGRALS

M(ey, 95 ¢34 04)=J“P‘(Ag 1;¢) W4, 1;¢,) rd¥(4, 2; ¢;) V(4, 2; ¢,) dV,dV,

Is
2s
2s

2p,
2s

2p,

2p,
2p,

2s

2p,
2p,

2p,

............................................................

ko= 3(ki+ky)5 ky=5(ks+ky); x=ky/(ky+Es)
M(cy, cg; €5 ¢4)
(R3R3EIED)® R33k,2(1 —2x2 4 x°)
SR} R3R3RS[3)E £%k;3(2 — 5% 4 3x*)
$(RFR3R3ER) ® K23k, * (1 —Bx* -+ 2x5)
as for M(1s, 1s; 2s, 2s)

SRESASED E Ak, S (155 + 6x* —2x7)
a(KIASASRY/3) Y KL4RG* (3 — 21 + 28" — 10x%)
as for M(1s, 2s; 2s, 2s)

F(RTRSRTRDE R2Ok,2(1 —9x% 4+ 17x° — 12x* 4 3%°)

TR RR3RY3)Y k5k;3(2 — 353 + 754 — 575 + 15x5)

S(RIRSRSRS)E K%k 4(1 — 14x* + 285 — 208 + 5x7)
as for M(2s, 2s; 2s, 2s)
Te(KPA3A3AD) £ 8k;3(1 — 25x3 +69x* — 78y +42x5 —9x7)

To(RASRSAD)E A7 B2(5x 2 — 10x~" 49— 150x2 + 5403 — 830x# +- 6615 — 2705 + 45%)
To(RySR3AD) Y K Th;2(5x 2 — 10X~1 +3 — 30)2+ 150x3 — 260x* + 217x5 — 90y + 15%7)

F(kIRSRERS) E E,7K;2(1'— 202 + 653 — 95x¢ +T4x5 — 30x5 + 5x7)
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For the Coulomb and hybrid integrals the rest of the integration is now entirely similar to
that for the one-electron integrals. For a few simple cases, the J’s of Coulson’s paper suffice,
but in general it will be necessary to exploit the new methods developed in part I.

First, as regards the simple integrals which can be expressed in terms of known J’s, an
example is provided by the Coulomb integral

C(Ls, 1s; Ls, 1s) = {(KIR3RIID)Y (wh3)} {Ty(2k,, 0, p) — Jy(2ky, 2k, p) —k, T (2kyy 2Ky )}

A few of the hybrid integrals which can be reduced in a similar fashion are listed in table 12.
As an example of the way in which the polynomials are combined to give explicit expressions
for these molecular integrals, we may consider

1(1s, 155 15, 15) = {(RIR3R3R3)} | (mk3)}{ Sy (ko g, p) — Sy(Ras Ky p) — Ry Ji(ks B ) s
where £, = k, +ky+k;. When &, = k, = k; = k, = £k, the expression reduces to

k=1(1s, 1s; 1s, 1s5) = _1“61%70 [e~kr{5+2kp-+16(kp)?} —e3k7 {5+ 2kp}].

In all but the simplest cases it is necessary to put the integrals into a form similar to (52).
Any Coulomb integral can be reduced to the form (56), and any hybrid integral to the
form (57).

Clegyrns ) = Nofcry oen ) f ACSAIL (56)

1(6‘1, A 64) = ]Vi(clb A 64) f() A e—kst/k4gi(cl’ ooy g5 t) di. (57)
The functions g, and g, are related to the { functions, involving products of the {’s with
the j’s introduced in the previous section. The variable of integration, ¢, arises from the
co-ordinate 7, by a change of scale, as will be explained below. The N, and N, are numerical
factors determined by the screening constants £, ..., £,. The values of such N’s and g’s are
listed in tables 9 and 10 for no less than 130 distinct integrals. These tables cover all the
integrals of the two kinds which can arise from the various combinations of 1s, 2s and 2p
atomic orbitals. It is not difficult to extend these tables, if need arises, to deal with the more
complicated wave functions. It will be noted that for many of the Coulomb integrals, two
different expressions can be constructed, depending on which electron is selected as electron 1.
The formulae listed in table 9 are in every case the simpler alternative.

As regards the arguments of the g functions, these are derived by the transformation
t = (kg-+ky) 7,5 for the Coulomb integral, and ¢ = k,7,, for the hybrid integral. It follows that
the arguments of the 7, p and other { functions entering into the g’s are (1,; 2k, p) for the
Coulomb integrals, and (1, %,p) for the hybrid integrals. The arguments of the j’s are
correspondingly (k,t/k,) for the Coulomb integrals and (2%,¢t/k,) for the hybrid integrals.
It will be remembered that £, = 4(k, +-%,) and that &, = $(k5+£,). It will be noted that in
this treatment no restriction is placed on the several screening constants which can all be
distinct without in any way complicating the analysis. In this respect our present method
is much more general than most others.

The expressions (56) and (57) can be evaluated by numerical integration or by expansion
in Z functions. Either of these alternatives compares favourably with the methods previously
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TABLE 9. Two-ELECTRON COULOMB INTEGRALS
C(eys €95 €35 c4)=f‘lf'(A, L ¢;) W(4, 15 ¢;) r3 W(B, 2; ¢5) V(B, 2; ¢y) AV, dV,

=N, (1, ¢35 ¢35 ¢s) fO tig,(cy5 €95 C35 €45 t) dt
b :pn(:l’ t; zkbp>: In = qn(l, 3 21‘51,,0)
§3:ni§3m(13 t; 2kbp)’ jn =jn(kat/kb)
=3(ky+ky), ky=5(ks+k,)

............................................................

Ca (3 04 N (1, ¢35 €35 ¢4) 8(C15 €25 €35 €43 1)
Ls és ;5 S(R K3k Y[ 2k,p)* K3PK52 Jibo
A B G UL L L DL AR
25 Is Ls  HKKKKY6k,)} E 4k Jabo
9 gs sa(kIR3 R3S 2k, p) % K 2K;3 J290
oy o) s(RMMKIGR) B Bilb—p)
2 1 2 L LB .
o 1 ) eRREREAVEE? b
2, 1s Ls  HEIRIEY 2k, p) k:oh;! mpl
25 L(IBRRLAOk, ) KOk, -
2p, %1(/5%5/53 3/2k,p)* k5K, J4{2k Pf 'y —po+5(po—12)}
g‘ g‘ (k3k2k5k4/2kbp) vk 5kb VRS
Sy o) RMMKIZR) RS Gi(i—p)

25 I Lo Z(MEBREkAIER? i,
25 dy(KBKIKY6k,p)} k, SES Judo
2s 25 wus(KAA3RS2F,p)* k‘5k;“ J38s0

2, 2ﬁx} s (k} k3A3 K512k, p) ¥ K5K,* 2j3(po—12)

o T

2}2 s 2}2} e (KERSRERY 6k, ) K5k;2  Js(bo—1y)

2px 2s 2px 1 5 1 1-61— . _

2, 2 2py} zes(RARASKS 2K, ) K2ORSS Js(d0—42)

2. 1s 1 LRHEEIGL)! Kok st
25 ds(k}k3K3KS 2k, p)* K 5K,2 -ij

51
2p, Te(K3R ]‘53"1‘5/6/%/9)é k5k;? J5{2kbpt 1—bo+3(0o—12)}
25 2s -1—6 KRk 6k, p) b E,OF; 5 la
2 gf’z v6 (KR k3A3A3 2k, p)* K Gkb Js{2kbpt 71— 90+3(20—92)}
S o) ThORRIOER) KSES  bi(hi—p)
S o S} Se(MMREIZER) KR bbb + e {(b0—2) —Ha=p)}
20, 2p, 2p, ds(KRE3K3E}I2Kk,p)E K;7Ky? Js(bo—12) + 7o {(po—12) —3(py—p4)}
26, 2p, 2p, aso(RIRIRSAY/2K,0)P KR, Gi{(po—1p2) —3(b2—p4)}

“I

I

2p, 1s  2p,  so(KRRSAIAY 2K, p)% R7R;! t J7(P1—/73)
25 2p, T<15_<k5k2k5]‘55/6'1%/’)é k,7ky* t7Y,(q1 —
20, 2p, So(RESKIRY 2R, p)% K, 7k 2 J7{kbpt (l’l —p3) — 6(1’0 —p2) —5(pa—14)}
20, s 1s  H(KRK3K3KY[2k,p)% K7 [ Jspo+ 217{170 2(170 Pz)}]
25 §(R}K3R3R3/6K, p) K, i t %[ jaqo+ 5J790— 5 (90—
2p,  Y(RIK3KIR} 2k, p) % K] 7kb 722k, p{ g o+ 337 (bo— (l’o £2))}

—1 2 5 3
2oz dEERREL [Jséiiﬁwi%gl (%’1 ’1:?3 kN

2p,  Te(kK3A3A3K3/6k,p)* k 7kb2 =22k, p{ s 90+ 32(90— 3(90
o 9 —H{Jsqi+357 (0 —3(q1— qs))}]
25),; 211:;} 16 (K R3R3 RS2k, p) ¥ K;7Ey 3J8(Lo—12) + 75 Jr{3(bo—12) +5(b2—14)}
2p, 2, Te(KRR3R3KS/2K,p) % K77Ey? [4k3 p2t- 2{J8P0+§J7(Po §(bp—12))}

— 4k, pt= {Jsl’l 2]7(171 5 [’3))}
+J8{Po $(po—12)} +3j2b0—5(bo—12)
—35(pa—p4)}]
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TABLE 10. HYBRID INTEGRALS

I(cyy cp3 ¢35 ¢4) =f‘P'(A, 1;¢) W(4,1; ¢) r1dW(4, 2; ¢5) Y(B, 2; ¢,) dV,dV,

ool
=N (c15 63, €35 ¢4) f 13 eFollke g,(cy, Cgy €3, €45 8) dE
0
pn=pn(19 ¢ k4p): 9= Qn(la t; /q,p),
In=Jn(2k,tlks)s k= F(ky+ky)

......................................................

A A

i € 63 4 Ni (615 €95 €35 64) 8i(Cys Cay €35 €45 £)
s 1s 1s 1s 2(k3k3K3p)t K3k jlpo
2s (k3 k3K3/3p)* K3kt
%, 2(k3kSEYp)E Kk Jl(k,;ppo i)
25 s 2K K3KY[3p)t k%k2 Jl o
2 3(RERp)E k3
,, 2 2B KN oot~ 100
2y oyt HRARIR) R 2, (po—15)
3, 1 2(kk3KYp)E %k iy
2s 2(k3K3K3/3p) % k3k32 t_]:lql
2p, 2(ki k3K p)* 3k tj\Lksppr —t{po—§(bo—12)}]
Is 25 1s 1s (K3R3K3[3p) % Kk 4kt Jabo
2s F(BE3Ep)* K ky! Ja29o
L 2p, (RIR3R[3p)* K thy! Ja(ksppo—1p))
0 2s s (R} R3K3 p)* K3ks2 17abo
2s (B R3/3p)} k- ths? 240
,, 2o SRR : tia(kupbo—tp1)
o o) MRAER) K2 2jy(po—12)
o, s (KKSKY[3p)E hpths? tjzpl
25 J(BKERY[p)E KAk
2p, (R3R3K3[3p)* K, *ky? th[k4PP1 —t{po—%(po—12)}]
Is 2, 1s 2, (KB kS Jalbo—by)
2s  2p, s(kik3K33p)* K5k t74(bo— P2
2, L HEKKp)E Kok Jelbo—b5)
25 A(KEKY3p)} K%k Js(0=9)
2p, 3Bk p)* K°ky! Jald 4P(l’o"l’2)—5t(/71 —p3)}
2, 2%,  TolkkIRYp)} K3k Tl
Is  2p, ¢35 2p, as for I (1s, 2p,; ¢s, 2[),,)
2p, ¢ ) as for I (1s, 2p,; 2p,, ¢4)
, Is 2, 1s 1s  MKBEp)! kS - ml
. 2s L(E3K3KY3p)} k5
4 ) %[Jz %g/z Ilz IZ //g)*)f; et J41{0t k4PP1 —bo+3(po—12)}
s s 3 P 2
o 2 ko) kT Jaay
~ 2p, $(kR3E3[3p) 2 K ‘5k“ Jalksppy—t{po—3(bo—12)}]
b A B L LR ts(bi—bs)
e Y Y . .
@) 2p, ls SRR3R p* K2Pky! Jalto—3(po—12)}
o 25 L(KJK3RY/3p)* KOk J4l90— (90— 42)}
A 2p, (R} K3K3 p)* KOkS! Jalk 4P{I’o (l’o —py)} =t {p1—%(p1—135)}]
2s 25 ls 1s S (KRS K3 p) % Kok ]3po
2s L (K3 k3 K3 3p)E koky!
. 2 ~-(§ Bk 733)) L .;30;74% —ipy)
5 T mkReREE G
y, Ye o SURKERS)E Kok ok ope— it
AR G L DRy B0 1)
2. LIs'  H(EKKYp)E ks sty
2s L(ER3 R 3p)t ks '

1739
%, LK)k talkep s —tbo—3(bo—02)}]
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TABLE 10 (cont.)

2s 2p, 1s  2p, Ts(kk3K3/3p) 2 K6 Js(bo—1b2)
25 2p, se(k}E3K3p)* K, 6k4 t75(90—45)
2p, 1 %(k5k5k5/3p)¥ k bky! Js(bo—12)
o2 Se (KRR o)) ko ) Ji(qg ;
2p, il(k5k5k5/3p) k; 6k ! ]5[3k4P(P0“P2) 3(p1—13)]
2p, 2p, Fo(KI k3R 3p) E Fy 6k4 t75(£1—p3)
25 2p, 62'} 2p, as f‘or 5 gs, gﬁx, ;?; 2]),%
y Gy as for I (2s, 2p,; 2p,, ¢4
2s 2p, 1ls s 1((R}R3K3/3p)* k.6 t“JsPn
2s Te(Rk3k3p)* KO
2p, LR E3R33p) k26 Js[t 1k4PI’1 ~po+3(Po—12)]
25 1s 12 (R k3K3[p)* K, 6/:4 Jsh1
2s e (k}k33/3p) % /c 6k;1 Jsq
2p, 1‘2(1351‘5155//7)i k, 6k4 Jslksppr —t{ po—3(Do—1P2)}]
oSy AeEEBA R (b=t
o, s HKKRY[3p)} khy! J5ito—3(po—12)}
2s (KRS ESp)4 &y 6k ! Jst90—3(90—12)} .
. %ﬁz %Eﬁ ﬁ ]/z ;332 klg?]:kgl J;[{«;P})P(ZI_ E({"B P[z;))}} o —5(01—135)}]
(1s s p)Ek; V) ]
2 (kB3 2y do+ 7180~ 1 1
2p, (k3 k3K3[p)* KKy k4Pt {J3Po+6J7(l’o — o)} =t a1 +Tods (01— 1)}
25 Is (R k3K3/3p) * k7 = Japo+557(bo—12)}
o A L L R O s o+ (00— 02} |
2p, HRR3K3[3p) t k.7 4Pt {J3P0+6J7(l’o —b2)} —Jst1—7577(b1—b3)
2p, s %(k K3k3/p)* k;l l{.78101'*'110]7(?1 ’1’3)}
2s (R E3K3[3p)* k7 1{J891+10J7(‘h
2p, . (k3 k3K3/p) E K7 4Pt {J8ﬁ1+10]7(l’1 —p3)} —Jsito—3(Lo—12)}
_— 9, 9 — 3916 (bo—1t2) +7(p2—1s)}
S op 2 op AT Fialbo—p2) + (o =)~ 312 ~p0)}
py py py py 1 s
2p, 2p, 2Py 2p, ?‘(k K3k3[p)* Js(po P2)+10J7{(l’0 —p2) —7(pa—1P4)}
gﬁx %Zy %ﬁx ggy '4?%2 115 115 ; 3:2 :k 1157{3(&)—?)) 7(pa—14)}
x z s x 10 p —J7 3
W 357 il
R drivi v bk,
2s o (kP A3K3[3p) K7 =77(91 = gs)
2p, Zi—O(k K3k3[p )k k7 Jiikspt=' (py —&3)_%(170“‘/’2)—%(172‘1’4)}
2p, 2p, to(k k3k3/p) k ? JA3(po—po) +7(L2—14)}
2py 2pz 63 21731 as fOI‘ I(sz, 2112’ 035 2px)
2py 64 as fOI‘ I(szi 2pz> px’ 04)
20,2, 1s 1s (K E3R3 p) Y k7R, =2 Jsbo+3J7{po— 3 (bo—15)}]
2s (kY R33[3p) k; 7k4 2[J890+§J7{%—3(90 92)}
2p, (k3 k3K3 p)* K, 7k k4pt [pro;_ b {0 (&) 2)})]}]
Jab1+ 397 —5 (01— b3
25 Is (R} 5]5‘5]‘5/3/’) 1[]8/’0‘*‘?]7{/’0 ( o—b2)}]
2s 12(k k3K3[p)* k ! 1 Jg g0+ $J11q0— 3(’]0 g2)}] .
2p, (R R3K3/3p) k27 kypt= 1[]8!’0”"?]7{/’0 3(po—12)}] —Jsbr
o 9 — 350 =5 "I’s)}
A I C UL DI Bia(bo—12) + 253 (Bo—12) +4(bo=1)}
2p, s LR K3 K3 p) 2,7 t—l[Jsl’l St — 5(1’1 —p3)}]
2s (K1 K3K3/3p)? kT “'Lag+ 3it0 — 30— 43)3) o,
2p, (k2 k3A3/p) K77 k4Pt [J8P1+§J7{P1 —3(p1—p3) ] —Jslbo—3(bo—12)}

—%752ibo “3(1’0 —p) — E%(Pz —p4)}
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used. Most methods for evaluating these two-centre integrals begin, as we have done, by
integrating with respect to electron 1. This provides explicit functions of the co-ordinates of
electron 2. Itis at this stage that the methods we have described for the Coulomb and hybrid
integrals differ from those previously used.

TABLE 11. j,(r) FUNCTIONS

n Ja(r)

1 2—(2+7) e

2 6—(6+4dr+72) e

3 24 — (24 + 1874672+ 713%) e~

4 8—(8+8r+4r2+7%) e

5 40 — (40 + 407 4+ 2072+ 673 +1%) e

6 96 + 872 — (96 + 967 4 5672 4 22r3 4 61 +75) e

7 144 — (144 + 1447+ 722+ 2473 4+ 61 +15) e

8 —24 44124 (24 + 247 4812 +1%) e

TABLE 12. SIMPLE HYBRID INTEGRALS

¢4 ¢y wk3(k3k3)—* I(1s, 1s; ¢, ¢4)
1s 1s (R3E)E Ty, gy p) — T3 (ks ks p) — Ko T (K, Bys )}

2s (R3K3(3)E {Tulkys kgy p) — T (Ras Ky p) — Ko T 5 (Rys Ky p)}

2p, (K33 1o (ks k3, p) = Tk, Ko ) =Ko S7(Rss K, p)}
25 Is (R3E3[3)E {J, (s, kyy p) — S (ks Kyy p) — ko To(Kss gy p)}

2s 1(R3K3) i{Jz(k‘p ksy p) —Jo(kys kys ) — ko T 15(ks, Kys p) }
) gﬁz (K3K3/3) 2 {J7 (ks sy p) — S (ks ks p) — ko 14(kys ks p)}
o ah KDY (ks ke p)=Tialho b £)~FuTiolb B )}
2pz 1s (kgki)é {JG(ksa k4> p) _‘]6 (kss k4a P) _‘kaJ7 (ksa k4, p>}
25 2 (K3£3/3)% {J15(Kys K3y p) =T 15(Ras Ky p) =Ko 14 (ks gy )}

2p, (B363) 8T 12(kss ks p) — T 1ok gy p) =Ko T 11 (s Ky P)}

k= ki+kyths; k= 3k +ky)

When k;= £, the leading J integral in the above expressions is replaced by a X integral, J, - K, in which
the # and m are related as follows:

n 1 2 3 4 6 7 9 12 15 17
m 1 2 3 4 6 7 10 13 23 25

For the Coulomb integral, the standard practice hitherto has been to carry out the second
step in elliptic co-ordinates, as with the one-electron integrals. Although this is quite
satisfactory for the simplest cases, it suffers from the disadvantage that as the integrand
becomes more complicated the final expressions become rather lengthy. An examination of
these shows that they lack the economy provided by our method involving Bessel functions.

For the hybrid integral, there are three possible alternatives for the integration with
respect to electron 2, after the integration has been carried out over the space of electron 1.
If, in (55), the integral over V, is expanded in elliptic co-ordinates, a finite number of terms
results. But though we have carefully investigated this way of performing the integration,
we do not recommend it, since many of the terms are exceedingly complex, and others have
infinite values, the infinities finally cancelling on summation. Such a process is prone to
many mistakes. If, on the other hand, the two radial distances 7,, 7,, and an azimuth ¢ are
used (dipolar co-ordinates), we have the method employed by Sklar & Lyddane (1939), and
Parr & Crawford (1948), This is also a very laborious process. Although it was not unreason-
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able for the simpler hybrid integrals considered by early workers, extension to more com-
plicated cases is really unsatisfactory. We shall return to this point shortly. The third method
of integrating with respect to electron 2 is that which forms the basis of this part.

It should be mentioned that for these hybrid integrals, some workers followed Furry
& Bartlett (1932), in carrying out the initial integration with respect to electron 2, having
expanded 1/7,, by use of the Neumann formula. Both this step, and the final integration with
respect to electron 1, were carried out using elliptic co-ordinates. Unless the screening
constants k5 and £, are identical, the final answer is obtained as an infinite series, and even
when k4 = £,, the final expression is exceedingly complex.

TaBLE 13. NUMERICAL EXAMPLE
kp=3 kp=5
4 2 Cs Cy k" ey, 95 €55 €4) * b T b
2, 2, 2, 2. 20kp)"F(X/3+Y/5—3Z/35) 01539  0-1538 00447  0-0448
2, 2, 2p, 2p, 2(kp)~} (X/3+Y/15—2/35) 0-1400 01399 00416  0-0415

2, 2p, 2p,  2p, 2(kp)~¥ (Y/156—Z/35) 0-0070  0-0069  0-0016 0-0016
2p, 2, 2, 2p, 2(kp)=* (Y15 +47Z/35) 0-0160 — 0-0048 —
2p, 20,  2p,  2p,  2(kp)~* (X/3+Y/15+4Z/35)  0-1490 — 0-0447 —

The quantities X, Y, Z are defined in §13.
* Obtained by new method, using numerical integration.

1 Obtained by new method, using Z functions.
1 Obtained by Parr & Crawford.

Of the various possibilities previously available for the hybrid integral, the dipolar
co-ordinate method was considered to be the least impracticable when occasion arose for
evaluating cases which involved four 2p orbitals. These integrals were needed in the theory
of the organic valence bond. This calculation featured in three papers before all the errors
in the exceptionally tedious algebraic and arithmetic processes had been completely
eliminated (Sklar & Lyddane, 1939; Griffing 1947, Parr & Crawford 1948). The necessity
for an alternative method can be appreciated after a brief examination of the equations of
the most recent of these papers, whose authors admit having found their work to be ‘some-
what troublesome’. By way of contrast, our new method provided values of five hybrid
integrals (which included those to which reference has just been made), in a calculation
which was completed in a day. It may be stated that these are in agreement with the results
of Parr & Crawford. In these integrals, the screening constants are all equal and written
as k. Values are given of the quantities £~1/(c, ..., ¢,) for two values of the parameter £p. By
virtue of the formulae of table 10 all five integrals can be reduced to the three quantities
X, Y, and Z, as shown in table 13. These X, Y, Z are defined as

1= ..
X— §fo e~45(26) {po(1, £; kup) —po(1, t; kup)}dt
1 [ .
Y — ﬂ;f e %, (28) {po(1, £5 kyp) —po(1,¢; kyp)} dt
0

1 [ .
Z=-- fo e, (20) {py(1,£; kyp) —pa(1, 85 kyp)}dt.

These were evaluated numerically for kp = 3; for £p = 5 values were found by reduction
to the Z functions. Values of the hybrid integrals are listed in table 13, in order that they may
be compared with the previous published figures. The results of Parr & Crawford are also
quoted in the table.

33-2
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248 M. P. BARNETT AND C. A. COULSON ON THE

14. EXCHANGE-PENETRATION AND COULOMB-PENETRATION INTEGRALS

These are defined in equation (51). The reduction of these integrals resembles that of the
Coulomb and hybrid integrals. In cases where the evaluation of the last mentioned type has
proved difficult, these others have also given rise to tedious calculations.

The operator H*(z) (see equation (51)), can be shown to be of the form e~*i A(r,;), where
k depends on the screening constants, and 4(r) is a simple polynomial in r (Goeppert-Mayer
& Sklar 1938). From this stage the working is strictly analogous to that for the two-electron
Coulomb and hybrid integrals, and either numerical integration or the analytical expansion
in Z functions can be used. It is a matter of some convenience that many of the quantities
needed for the Coulomb integrals are also required for the Coulomb-penetration integrals,
and similarly with the hybrid and exchange-penetration integrals.

As an example we have considered the case discussed by earlier workers, in which the lone
electron resonates between 2p, orbitals on 4 and B, penetrating only the L shell of the
neutral atom 4. If this L shell is full, the integral is of the type denoted by (4; ab). We let
the screening constants for all the L orbitals on 4 be £; this will then also be the screening
constant for W(4, 1). The screening constant for W(B, 1) is £,. Then the exchange-penetration
integral can be reduced to the form

. —— m% * —kra1—k4rp1 1 1 2
(4; ab) = - H*(1)e T Ty SN0, sind,, cos? ¢, dV;,

where H¥(1) — —;i e2ar (91 8kr 1 2(kr,,)2 4 (kr,y) %)

al

This integral is readily reduced by the methods of this paper to

%Q(k5/p)%/c;2f:e‘3kt/k4 t{po(1,t; kyp) —pa(15 85 kyp)} {2+ 3 (%) +2 (g)2+ (%)3} .

We have evaluated this by writing it as a sum of Z functions, and choosing the special case
k, = k; kp = 5. The value obtained was £k~1(4; ab) = 0-0418 48, to be compared with the
value 0-:04180 obtained by Parr & Crawford.

The reduction of the Coulomb-penetration integrals is completely analogous to this.

As regards the relative merits of ow1 method and those previously used, the same remarks
apply to the Coulomb-penetration integrals as were made for the Coulomb integrals.
Similarly the comments on the hybrid integrals apply also to integrals of the exchange-
penetration type.
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